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Abstract - There is an obvious need to be able to 
integrate both linguistic-based and stochastic-based input 
information in data fusion. In particular, this need is 
critical in addressing problems of track association, 
including cyber-state intrusions. This paper treats this 
issue through a new insight into how three apparently 
distinct mathematical tools can be combined: "boolean 
relational event algebra" (BREA), "one point random set 
coverage representations of fuzzy sets" (OPRSC), and 
"complexity-reducing algorithm for near optimal fusion" 
(CRANOF). 
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1. Introduction 

This paper can be considered a direct extension and 
modification of ideas originally proffered in [12, 13, 24]. 

At the most general level, linguistic-based or natural 
language information is as important as probabilistic or 
stochastic information. In track association and security 
and intrusion problems, this is certainly the case. In the 
paper presented here, we show how three mathematical 
tools can be utilized in tandem to address a large class of 
problems involving both linguistic-based and probabilistic- 
based information. 

These mathematical tools considered in the above task 
are "boolean relational event algebra" (BREA), "one point 
random set coverage representations of fuzzy sets" 
(OPRSC), and "complexity-reducing algorithm for near 
optimal fusion" (CRANOF). All of these have previously 
been applied to extend the capabilities of traditional 
probability and logic in analyzing a number of real-world- 
based problems. 

BREA [12-17] has been used, at least in theory, to 
address problems involving compositional functions of 
probabilities, including the special case of arithmetic 
division, leading to the ability to compare and contrast 
inference rules from an internal algebraic, as well as a 
numerical, viewpoint. 

OPRSC [10, 12, 13, 15-17, 19], on the other hand, has 
been useful in connecting fuzzy logic concepts directly and 
rigorously with corresponding stochastic-based concepts, 
as well as motivating a number of new fuzzy logic 
definitions and relations. 

A preliminary form of CRANOF [4, 5, 7, 8, 9-12, 24] 
has already shown how a number of well-known "gaps" 
between classical logic reasoning and natural appearing 
probabilistic counterparts can be closed through its second 
order, i.e., randomized, probability structure. 



We first review briefly - with an eye toward 
motivations - BREA (in Section 2), where each sub-type 
corresponds to some particular numerical function (or 
common type of functions) with domain in the unit interval 
(or its n-fold form) and with range in the unit interval. We 
also briefly consider OPRSC and fuzzy logic concepts 
(Section 3). Next (Section 4), we also briefly describe 
CRANOF. Finally, in Section 5 an outline of a procedure 
is presented, demonstrating how BREA and OPRSC can 
be directly combined, so that a large class of fuzzy logic 
quantified statements can be fully integrated into a single 
probability setting, along with other initially modeled 
probabilistic information. In turn, this can be utilized as 
probability-based information inputs into CRANOF, 
yielding a test for the validity of the reasoning processes to 
be considered. It is also pointed out that this procedure can 
be specialized to problems of tracking and correlation of 
targets of interest having disparate attribute information 
present, as is typical in intelligence decision-making 
problems, such as shown in last year's special session [24]. 

2. Summary of BREA 

2.1. Boolean conditional event algebra as a 
special case of BREA 

Referring again to the references in [12-17], BREA 
originally began with the proper sub-concept of Boolean 
Conditional Event Algebra (BCEA) (see, in particular, 
[15], [16]). One motivating factor behind the development 
of BCEA is the desire to be able to assign reliabilities to 
various logical combinations of rules (or conditional 
expressions or if-then statements, etc.), when each rule has 
an assigned reliability in the form of naturally 
corresponding conditional probability. For example, 
consider the conjunction of "if b, then a", "if d, then c", 
i.e., "(if b then a) and (if d, then c)", where reliabilities 
have already been assigned to each rule separately, in the 
form of conditional probabilities, P(a|b), P(c|d), 
respectively. Thus, from now on, using the symbol (a|b) to 
represent the rule "if b, then a", and noting that in general 
rules need not be perfect, with conditional probability 
represented as usual by P(a|b) • P(ab)/P(b), provided P(b) 
> 0, where either & or no symbol represents boolean 
conjunction and we denote ordinary events (or, 
equivalently, propositions) by lower case roman letters, 
etc., we wish to make sense of either 

P*((a|b)) = P(a|b),   P*((c|d))=P(c|d). (2.3) 

P((a|b)&(c|d)) (2.1) 

or for some appropriate extensions P* of P and &* of &, 
P*((a|b)&*(c|d)), (2.2) 

where the basic compatibility relations hold 

Another motivating force leading to CEA is the desire to 
be able to weed out of rule-based systems those rules that 
appear contradictory or nearly contradictory, or the 
opposite: the same or nearly the same. Thus, we seek a 
measure of contrast / similarity for rules. In the case of 
ordinary events (in a common boolean algebra), say a, c, 
some natural measures that also take into account the 
probability of a, c are P(aAc) and P(aAc | a v c), where v is 
boolean disjunction and A is the boolean symmetric 
difference operation and (.)' is boolean negation. Thus, 

aAc = ac' v a'c ; 
P(aAc) = P(ac') + P(a'c) = P(a) + P(c) - 2P(ac), 

P(avc) = P(a) + P(c) - P(ac), (2.4) 
yielding 
P(aAc | a v c) = (P(a)+P(c) - 2P(ac))/(P(a) + P(c) - P(ac)). 

(2.5) 
See [15] for more details justifying that, indeed, P(aAc) 
and P(aAc | a v c) are actually legitimate pseudometrics in 
the mathematical sense with respect to a, c. 

Suppose that the following relations hold, denoted as 

Assumption I: 
Let B be a boolean algebra containing a, b, c, d,... here and 
?:B -¥ [0,1] a probability measure over B. Suppose there 
are extensions (in some natural sense) B* of B and P* of P, 
where B* is a boolean algebra and P*:5->[0,1] is also a 
probability measure. Suppose also all rules formed from 
ordinary events a, b, c, d,... in B — whence (a|b), (c|d) ~ are 
in B*. Hence, all logical combinations of them via the 
boolean operations of B*, &*, v*, (.)'*, etc., are still in B*. 

Then, e.g., by replacing a by (a|b), c by (c|d), & by &*, 
v, v*, etc., in eq.(2.5), still assuming also the compatibility 
relations of eq.(2.3), 

P*((a|b)A*(c|d) | (a|b)v*(c|d)) 

= [P(a|b) + P(c|d) - 2P*((a|b)&*(c|d))] / 
[P(a|b) + P(c|d) - P*((a|b)&*(c|d))].        (2.6) 

P*((a|b)A*(c|d) | (a|b)v*(c|d)) in eq.(2.6) can be 
evaluated, provided P*((a|b)&*(c|d)) can be obtained. 

P*((a|b)A*(c|d) | (a|b)v*(c|d)) can then be used as a 
reasonably measure of contrast / similarity: the smaller its 
value the more similar (a|b) is to (c|d) with respect to P. 

Furthermore, if distributional considerations can be 
introduced, where the probability measure P itself is 
allowed to vary in some way, so that P*((a|b)A*(c|d) | 
(a|b)v*(c|d)) in eq.(2.6) becomes a random variable, say X, 



and if the cumulative distribution F of X, given H0 holds is 
obtainable, then the computation of the pseudometric in 
eq.(2.6) yields, in a standard way, a test of hypotheses H0 

vs. Hi, where 
Ho = (a|b) and (c|d) are sufficiently similar so as to 

be merged in some sense or just one of them 
kept in the system, (2.7) 

Hi=d (a|b) and (c|d) are not sufficiently similar; thus 
keep both in system, etc., (2.8) 

For some standard significance test level X, 0 < X «1, 
determining test threshold Kx via type one error 

X = Prob(Reject H01 H0 holds) = 1-F(K0, 
whence, 

KX = F-'(1-X), (2.9) 
where one chooses H0 at significance level X 

iff   P*((a|b)A*(c|d)|(a|b)v*(c|d))<K,; (2.10) 

or, one chooses H] at significance level X 
iff   P*((a|b)A*(c|d) | (a|b)v*(c|d)) > K* . (2.11) 

(Again, see [15] for more details of a procedure somewhat 
similar to the above one.) 

Fortunately, one can show that for any given boolean 
algebra B and probability P over B, Assumption I can 
always be satisfied. For details of one natural approach, 
called the Product Space one, see, e.g., [13, 15, 16]. In this 
case, the extended measurable space (B*, P*) is called 
Product Space Conditional Event Algebra (PSCEA), due to 
its (countable) product space structure and the existence of 
rules as actual "conditional" events in B*. In addition, it 
has been most useful to consider, in addition to the 
ordinary boolean operators (&*, v*, (.)") over B*, certain 
modifications of non-boolean operators originally 
introduced independently by Adams [1,2] and Calabrese 
[8'], relative to spaces somewhat different in structure than 
PSCEA. In the case of Adams, these operators were used 
to characterize algebraically his High Probability Logic [1, 
2] (see also Section 4 here). We denote these (modified) 
non-boolean operators over B* as &AC and vAC, to indicate 
their conjunctive-like and disjunctive-like properties of 
each, respectively. 

2.2. Boolean weighted average event algebra 
as a special case of BREA. 

Note that the realization of Assumption I in Section 2.1, 
together with the compatibility relation in eq.(2.3), shows 
that any BCEA, such as PSCEA, produces a 
homomorphic-like" (or "commutative diagram-like") 
relation, via probability (in the form of conditional 
probability)   connecting  proper  numerical   division  (of 

probabilities) over the unit interval (i.e., with the 
restriction that the numerator is less than or equal to the 
denominator, with the latter always positive) with an 
"algebraic division" in the form of the conditional event 
itself. Consider now, instead of arithmetic division of 
probabilities, the rather different weighted average 
operation. Let w =d (wlv.., w„) be a fixed weight vector of 
real numbers, where each 0 < w, < 1 and W| +...+wn = 1, 
and define the averaging function fw:[0,l]n->[0,l] by 

fw(x)=   w,x,+...+wnxn, (2.12) 

where x = (xi,...,xn) in [0,l]n, i.e., 0 < Xj < 1. Next, 
considering any n events Bi,..., a„ in B, and the relative 
atoms generated (by either use of conjunctions as we show 
here, together with evaluations via P, or alternatively, 
using cartesian products and product probability based 
upon identical marginal probability P), indicated typically 
as 

cog=
d(a,)[g(1)1&...&(an)

[g(n)); 

where g:{l n}-»{0,l} is arbitrary and for any c ini?, 

r-l°l =d 
c,   c' m_<i, (2.13) 

Then, it is easily proven that, using the atomic 
decomposition of each aj as the disjunction of all relative 
atoms in which only aj - not, aj' - appears as a conjunctive 
factor, 

w,P(a,) +...+ wnP(an) 

2(P(a»,)-W(g)) , (2.14) 
(all possible g:(l n)->(0.1), except for go) 

where 

and 
g0(k)=dl,fork=l,...,n, 

W(g)=d 2(wk). 
(l£k£n.g(k)-0) 

(2.15) 

(2.16) 

In turn, eq.(2.14) suggests that one could choose here 
(among possibly many other approaches) for the algebraic 
counterpart to fw, using the same function symbol, 
fw:2?n->J?x[0,l], where [0,1] is endowed with the usual 
Borel field of subsets, and for any 8i,..., a„ in B, 

fw(a,,..., a„) =d V(cogx[0, W(g)]). (2.17) 
(all possible g:{l n)-»(0,l), except for go) 

In line with the terms "conditional event" and "conditional 
event algebra", as used in Section 2.1, we can call any 
fw(a,,..., an) a weighted average event and (B*,P*) here a 
boolean weighted average algebra. 

Then, for any given probability measure P over B, 
define probability measure P* over the boolean algebra 
spanned by Z?x[0,l], i.e., set-wise, the collection of all 



finite disjunction of products cxA, for any c in B and any 
A in the borel field over [0,1]: First, define P* as the 
restriction of the simple product probability measure of P 
with the uniform or lebesgue probability measure over 
[0,1], and then extend this in the obvious way. This finally 
yields the analogue of the compatibility condition in 
eq.(2.3), for all aj in B and all P over B, 

P*(fw(a„..., a„)) = fw(P(a,),..,P(a„)).       (2.18) 

Note here, that, unlike the role that the single operation 
of arithmetic division plays in conditional event algebra, 
here the class of all weighted average operations fw (as w is 
made to vary) in general corresponds to the same choice of 
weighted average event algebra. 

Again, we can ask, analogous to the motivation for 
introduction of conditional events, how can the relation in 
eq.(2.18) be used ? As one response to this, consider, in 
place of the issue of determining similarity or contrast 
between two rules of interest, as discussed in Section 2.1, 
the issue of comparing also for similarity or difference, the 
method of modeling of two experts, where each averages 
the input probabilities corresponding to several factors by 
supplying, in general different weighting factors. Of 
course, such experts could use other, far more complicated 
ways of fusing together such available probabilities, but 
for simplicity, we restricted the available information to be 
in the form of probabilities of separate attributes and the 
fusion procedure here to be in the form of simple weighted 
averaging of the probabilities. 

Thus, for example, one could consider the problem of 
estimating the probability of an intrusion somewhere in a 
given complex system, when the only information 
available (from appropriate intelligence sources) are 
commonly known probabilities of the intrusion being 
directed by group Q and the intrusion occurs in area R. 
Suppose then each expert averages the two available 
probabilities in different ways, according to his / her own 
prior general knowledge, bias, etc. Thus, in effect we wish 
to test or determine for similarity or difference 

vs. 
Expert 1: (l/2)-P(a) + (l/2)-P(b) 

Expert2: (l/3)P(a) + (2/3)P(b). 
(2.19) 

Then, without going into details (see [12] for this same 
example with full analysis; see also, e.g., [14, 15, 17] for 
more general analysis), one can use the natural consistency 
relations in eq.(2.18), analogous to the estimation and 
testing of hypotheses procedure for rules in Section 2.1. 
For the general case with weighting vectors w(j) = 
(Wj,i,...,Wj,n),j = l,2 

vs. (2.20) 
Expert 2: w2,iP(a,) +...+ w2,n-P(a„), 

where 
fw(j)(xlv..,xn) =d Wj,,-x, +...+wj-n-xn, (2.21) 

all of this depends on the evaluation of the key quantity 

P*(fw(i)(ai,...,an) A* fw(2)(ai,..., a„) | 
fw(i)(ai>...,aB) v* fw(2)(ai,..., a„)) 

= ft<„(P(ai),...,P(aJ) + fw(2)(P(aI),...,P(an)) 

- 2P*( f^a,,...,^) &* fw(2)(a,,..., an)] / 

[fw(I)(P(a,),...,P(a„)) + fw(2)(P(a,),..,P(an)) 
- P*( fwd^a,,...,^) &* fw(2)(a,,..., a„)].     (2.22) 

Finally, it should be pointed out that it can also be 
demonstrated in a straightforward way that the approach to 
comparison via eq.(2.22) is superior in a number of ways 
to the naive approach that simply compares externally the 
two models numerically, i.e, utilizes simply 

| fw(1)(P(a1),...,P(an)) - fw(2)(P(a,),...^(an)) | .     (2.23) 

2.3. Boolean single argument function 
algebra as a special case of BREA. 

Next, consider any single argument function g:[0,l] -> 
[0,1]. In (first order) fuzzy set parlance [22], g is not only 
a fuzzy set membership function, but is a typical (external) 
type of fuzzy set modifier. For example if g is some 
monotone increasing function with g(j) = j, j =0, 1, 
depending upon its shape, g can be naturally identified 
with a corresponding linguistic quantifier, such as, e.g., 
when g(x) = x2, for any 0<x<l, g is often called "very", 
while, if g(x) = xI/2, for any 0<x<l, g is often called 
"somewhat", etc. Or, if g is decreasing, with g(j) = 1-j, for 
j = 0, 1, g is usually identified as a negative type of 
quantifier, etc. 

Hence, in this context, for any such g, one seeks the 
extensions B* of B, P* of P over B, with P* a probability 
measure over B*, so that g as an algebraic function 
g:B->B*, for any a in B, again the analogue of eq.(2.3), is 
sought: 

P*(g(a)) = g(P(a)). (2.24) 

If g(x) is a polynomial or is analytic in x (i.e., an infinite 
series) with coefficients in [0,1], so that its range is also in 
[0,1] for all x in [0,1], then corresponding g-events have 
been determined [13, 14, 17] 

Expert 1: wu-P(a,) +...+ w,,nP(an) 



3. Summary of OPRSC 

OPRSC was developed in order to represent in a natural 
way (first order) fuzzy sets and fuzzy logic concepts by 
corresponding probability ones. This provides a general 
insight into already-developed fuzzy logic notions and an 
overall guideline for the potential development of new 
fuzzy logic concepts. Basic references here include [10, 
13, 17, 19, 21]. First, recall that given any fuzzy set 
membership function h:D—>[0,1], for some domain D, in 
general there exist a large class of distinct (but by no 
means, all) random subsets S(h, cop) of D, indexed by the 
class of all copulas cop with arguments corresponding to 
elements of D, that are one-point coverage-equivalent to h, 
with corresponding probability measure Ph,coP. 

Ph.^x in S(h, cop)) = h(x), all x in D.        (3.1) 

(See [21] for background on copulas, co-copulas, and 
survival copulas copA.) Eq.(3.1) shows fuzzy set 
membership functions are a sort of weak specification of 
certain classes of random subsets of their domains, much 
as the expectation provides weak information about the 
random variables it represents. 

In addition, a number of "homomorphic-like" relations 
hold with established fuzzy logic concepts, such as the 
"fuzzy extension principle" or "fuzzy conditioning" for 
populations, using ratios of "fuzzy cardinalities" of 
attributes. For the latter concept, consider for say, g, h: 
D-»[0,1], w:D->[0,l], D finite with w a weighting vector, 
the weighted population (over D) averaged conditioning of 
attribute gtoh 

(3.2) 

(glhW. =d L(w(x)copA(g(x),h(x))) / E(w(x)h(x)), 
linD xin D 

where copA is the survival copula associated with copula 
cop, defined for any y, z in [0,1] as 

copA(y,z) =d y + z - cocop(y,z), (3.3) 

where in [21], (radial symmetry) conditions are established 
for copulas to coincide with their survival copula. Then, it 
follows [10] that 

V.Sl'vcop.w — "g,cop(3g,cop I DgcopJ 

= Pg.ooP(Vw in S(g,cop) | Vw in S(g,cop)), (3.4) 

where events 
ag.cop ag.coP 

=d (v* in S(g,cop)),   ah,cop =
d (Vw in S(h,cop));   (3.5) 

the latter being one-point coverage equivalent to g, h, 
respectively. 

4. Brief summary of CRANOF. 

Choose a collection of rules (aj|b;), j in J, aj, bj in B, J a 
finite index set, labeling (a|b)j = (aj|bj)j „, j, as a premise 
set, and choose another rule of interest (c|d), labeled as a 
potential conclusion, and call G =d [(a|b)j;(c|d)] an 
entailment scheme of interest, in which we wish to 
determine the behavior of P(c|d), when the quantity P(a|b)j 
= P(aj|bj))j „, j is either known or certain restrictions on 
these values are known. A typical (lower bound threshold) 
form of the underconstrained probability problem for G 
can be phrased as 

Given: P(a,|b,) > t,,..., P(am|bm) > („; (4.1) 

Estimate in some best sense P(c|d), (4.2) 

where the tj are known, as are the events aj, bj, e, f, but P is 
not, up to satisfying the above constraints. In light of 
Section 2, the above can be interpreted in terms of 
reliabilities of rules. 

Because in general the solution of eqs.(4.1 and (4.2) is 
difficult, a typical approach to this issue is to consider the 
corresponding "high probability" version of eq.(4.1), 
where now the thresholds t, are allowed to vary toward 
unity in certain specified ways ( such as uniformly or via a 
fixed "scaled" rate) and one then determines whether 
correspondingly the probabilities satisfying these 
constraints produce a limit that is either unity - the "valid" 
case for G - or less than unity - the "invalid" case for G. 
(Or, correspondingly, we can say (a|b)j entails (c|d), in 
some appropriate sense, or that (a|b)j does not entail (c|d) 
in the same sense.) 

Prominent among those taking a high probability 
approach with a uniform rate of limit has been Adams [1, 
2] (with further analysis provided in [5, 9]) in fact this 
approach as been universally known simply as High 
Probability Logic (HPL), with associated HPL-validity or 
HPL-invalidity holding relative to G. Succinctly, this can 
be summarized as simply 

GisHPL-valid    iff limit(minconc(G)(tj)) = 1, 
(tjt 1 uniformly) 

G is HPL-invalid iff limit(minconc(G)(tj)) < 1, 
(tjtl uniformly) 

(4.3) 

Vw is a random variable over D with probability function 
w, independent of random subsets S(g,cop), S(h,cop) of D, 

where the minimum conclusion function of G is defined as 

minconc(G)(tj) 



=d inf{P(c|d): all P over B such that eq.(4.2 holds}. (4.4) 

Many patterned special cases of eq.(4.2) can also be 
considered either as extensions of valid or invalid Classical 
Logic entailment schemes, or arising from AI 
considerations. (See, e.g., [20, 23] for more details.) 
These include such well-known schemes as transitivity, 
contraposition, strengthening of antecedent, and positive 
conjunction, among many others. However, it rums out 
that 

G is HPL-invalid  iff    limit(minconc(G)(tj)) = 0.  (4.5) 
(tjtl uniformly) 

Thus, the minconc function of G cannot be a nontrivial 
measure of the degree of validity of G in the HPL sense. 
Moreover, it also follows that many patterned entailment 
schemes, commonly agreed by the AI / Rule-Based 
communities [20, 23] that ought to be valid in some sense, 
in agreement with commonsense reasoning, fail to be 
HPL-valid, including all four of the above-mentioned 
special schemes. 

The independent work of Bamber [3, 4] and that of 
Goodman [5] and Goodman & Nguyen [18], utilize, in one 
sense or another, second order probability - i.e., 
probability of probabilities, where the latter are assigned 
some prior distribution. This can be relative to the fixed 
threshold problem in eqs.(4.1) and (4.2) (or related to such) 
or the high probability version of such. This work was 
followed by the joint efforts of Bamber, Goodman, and 
Nguyen in [5-8, 11, 12, 24], leading to the CRANOF 
algorithm that determines both the direct estimation and 
high probability version of eqs.(4.1) and (4.2). Roughly 
speaking, CRANOF utilizes in place of Adams HPL 
criterion function, minconc(G), the more moderating 
criterion function meanconc(G). Here, using obvious 
multivariable notation, 

meanconc(G) =d EP(P(c|d) | P(a|b), > t,),       (4.6) 

where some appropriate prior distribution is assigned to P 
now considered as a random quantity. In general, the 
earlier assumption that the prior should be uniform is 
replaced by an arbitrary, but fixed, Dirichlet distribution 
(the Dirichlet family includes the uniform distribution as a 
special case and can be justified from several viewpoints 
as "best" prior [18]). Again, because of the possibility of 
complex calculations arising, a modified version of 
meanconc(G) has also been considered in "plug-in" form: 

PA(c|d);    P-=dEP(P(.)|P(a|b)J>tJ), (4.7) 

whence, by basic linear properties of expectations, etc., 

PA(cd) = EP(P(cd) | P(a|b)j > tj), (4.9) 

PA(c'd) = EP(P(cd) | P(a|b), > t,) (4.10) 

Most recently in [11] a full closed-form evaluation of 
the (fixed threshold) plug-in version in eqs.(4.7)-(4.10) has 
been obtained (for the general Dirichlet prior assumption 
for P), that also appears feasible to implement. Moreover, 
this solution is directly related to Bamber's original 
uniform limit-directed high probability logic [4], dubbed 
by him as the "Unsealed" Near Surety Probability Logic 
UNSPL) criterion for validity / invalidity of any entailment 
scheme G. According to Bamber's original algebraic 
characterization in [4], this means that both the fixed 
threshold and high probability approach to G, in effect, 
have the original premise set (a|b)j replaced by a much 
smaller class of rules. This smaller class arises as follows: 
First, an initial collection of sets of rules, labeled as 
"exclusion classes", of the premise set of G is 
automatically determined. Each such set of rules is nested 
in the next set. Also, the smaller the nested set of rules, the 
"rarer" it is, compared to the entire premise set of rules. 
Then for each such class, a single rule, in effect, is 
automatically selected, thereby reducing significantly the 
premise set size. In [11] it is pointed out that this single 
rule is actually the &Ac operation over the corresponding 
exclusion class of rules in material conditional form; it is 
also indicated that Bamber's algebraic characterization is 
equivalent to a modified form of material conditional 
logic, that accounts for ambiguous validity relative to 
certain of the exclusion classes, where the potential 
conclusion rule is also replaced by its corresponding 
material conditional form. 

5. Combining BREA and OPRSC. 

This section shows one way in which BREA and OPRSC 
can be combined to treat many fuzzy logic quantified 
expressions. Consider first any given fuzzy set 
membership function h:D—>[0,1], as before, and some 
external g-modifier of h as discussed in Section 2.3, where 
g:[0,l]-»[0,l]. If for each a in B a g-event g(a) exists in 
the sense of relational event algebra, i.e., there is some 
boolean algebra B* extending B and a probability measure 
Pg* over Bg*, extending P, such that eq.(2.24) holds. In 
particular, in that equation, choose a to be anC0PtX, where 
event 

ah,coP.x =d (x in S(h,cop)), (5.1) 

where random subset S(h,cop) is as before. Hence, 
eq.(2.24) implies, for any copula cop indexed by D, 

g(h(x)) = (Ph,cop)g*(g(ah.cop.x)), for all x in D.    (5.2) 

The relation in eq.(5.2), of course can be extended to g 
PA(c|d) = PA(cd) / (PA(cd) + PA(c'd)), (4.8)     having  multiple   arguments,   again  provided  that  the 



corresponding form of (2.24) holds. For simplicity, 
suppose all of the functions gj considered here, are single 
argument modifiers, i.e., gj:Dj-»[0,l], and hj:Dj->[0,l] is a 
fuzzy set membership function, j = 1, 2,..., m, so that, 
analogous to the premise set information of eq.(4.1) given 
in lower bound threshold form, we have 

(g,(h(x,) > t,),..., (gm(h(xm)) > O (5.3) 

In a natural sense, the composition function values 
gj(hj(Xj)) correspond to linguistic information in the form 
of gj-modified degree of attribute j possession, for j = 1,..., 
m.   In addition, information may also be present in direct    Acknowledgements 
probability form provided also as originally in eq.(4.1) as, 
e.g., 

(P(b.) > s,),..., (P(bn) > sn), (5.4) 

6. Conclusions 

Over the past number of years the co-authors of this paper 
have made contributions to the development of a number 
of mathematical tools that are useful in problems of track 
association and data fusion. This paper provides new 
insight into the meaning and use of these tools, as well as 
shows how three of them can be systematically combined 
to provide an approach to fusing both linguistic and 
probabilistic descriptions. 

Of course, all of the s, 
to 
of 

for appropriately known events bj. 
and tj are known.     Finally, suppose that we wish 
estimate P(c) under the above knowledge.    By use 
eq.(5.2), the inequalities in eqs.(5.3) and (5.4) become 

((Phl.cop)g,*(gi(ah„coP.x1)) 2: t,),..., 

(((Phm,c<>p)g„*(gm(ah„cop.xJ) ^ O 

for all x in D, and 
(P(b,) > s,),..., (P(bn) > sn), (5.5) 

Thus, e.g., one can consider estimation of P(c) via both 
the linguistic and original probabilistic collections in 
eq.(5.5), in complete probability form, where, the original 
separate variable probability measures P and (Phj>Cop)g•* are 
replaced by a common variable joint probability measure. 
This is clearly an unconditional entailment problem. 

Going one step further, such as illustrated in eq.(3.4) 
apropos to fuzzy logic conditioning of a population - 
whence, corresponding to linguistic conditioning of the 
population - and where the original probabilistic aspect of 
the information is also given in conditional form, but also 
with suitable modification of eq.(5.2), one then is faced 
essentially with a form of the rule-based entailment 
problem which is treatable by use of CRANOF, as 
outlined in general in Section 4. 

Lack of space here precludes any further details, except 
to say that for many types of tracking or fusion problems, 
the above procedure appears to be a reasonable method for 
combining linguistic-based and probabilistic-based 
information into a common entailment problem, analogous 
to the detailed approach provided in a previous application 
of CRANOF to tracking association issues [24]. 

The first author wishes to express his appreciation to the 
Chief of Naval Operations (CNO) Strategic Studies Group, 
Newport, RI for their partial support of this work. The 
second two authors wish to express their appreciation for 
support of this work by the Office of Naval Research 
(ONR) In-House Laboratory Independent Research 
Program (ILIR), FY02, at SSC-SD. Many of the ideas 
presented in this paper were discussed and refined during 
the Summer of 2001, involving all of the co-authors; as a 
consequence, the last author wishes to express his 
appreciation to the Navy-ASEE Summer Faculty Research 
Program for their ongoing support 

References 

[1] E.W. Adams, "On the logic of high probability", 
Journal of Philosophical Logic, vol. 15, 1986, pp. 255- 
279. 
[2] E.W. Adams, "Four probability-preserving properties 
of inferences", Journal of Philosophical Logic, vol. 25, 
1996, pp. 1-24. 
[3] D. Bamber, "How probability theory can help us 
design rule-based systems", Proceedings 1998 Command, 
Control, Research & Technology Symposium, Naval 
Postgraduate School, Monterey, CA, June 29-July 1, 1998, 
pp. 441-451. 
[4] D. Bamber, "Entailment with near surety of scaled 
assertions of high conditional probability", Journal of 
Philosophical Logic, vol. 29, 2000, pp. 1-74. 
[5] D. Bamber & I. R. Goodman, "New uses of second- 
order probability in estimating critical probabilities in 
Command & Control decision-making", Proceedings 2000 
Command & Control Research & Technology Symposium, 
Naval Postgraduate School, Monterey, CA. June 26-28, 
2000); 53 pp., url: 
<http://www.dodccrp.org/2000CCRTS/cd/html/pdf papers 
/Track 4/124.pdf>. 
[6] D. Bamber, I.R. Goodman & H.T. Nguyen, "Extension 
of the concept of prepositional deduction from classical 
logic to probability: an overview of probability-selection 



approaches" Information Sciences, vol. 131, 2001, pp. IPS- 
ISO. 
[7] D. Bamber, I.R. Goodman & H.T. Nguyen, 
"Deduction from conditional knowledge", submitted to 
Soft Computing, to appear. 
[8] D. Bamber, I.R. Goodman, W.C. Torrez & H.T. 
Nguyen, "Complexity reducing algorithm for near optimal 
fusion (CRANOF) with applications to tracking and 
information fusion", Proceedings Signal Processing, 
Sensor Fusion & Target Recognition X (I. Kadar, ed.), 
SPIE vol. 4380 (AeroSense 2001, Orlando, FL, April 16- 
20, 2001), to appear. 
[8'] P.G. Calabrese, "An algebraic synthesis of the 
foundations of logic and probability", Information 
Sciences 42, 1987, pp. 187-237. 
[9] I.R. Goodman, "A decision-aid for nodes in Command 
and Control systems based on cognitive probability logic", 
Proceedings 1999 Command, Control, Research & 
Technology Symposium, Naval War College, Newport RI 
June 29- July 1, 1999, vol. 2, pp. 898-94. 
[10] I.R. Goodman, "Use of one-point coverage 
representations, product space conditional event algebra, 
and second-order probability theory for constructing and 
using probability-compatible inference rules in data fusion 
problems", in Biennial Review 2001, Space & Naval 
Warfare Systems Center, San Diego, CA, pp. 58-69. 
[11] I.R. Goodman & D. Bamber, "New relations between 
Adams-Calabrese and Product Space conditional event 
algebras with applications to second order bayesian 
inference", Proceedings Conference on Conditionals, 
Information, and Inference, Hagen, Germany May 13-15, 
2002, to appear. 
[12] I.R. Goodman, D. Bamber, H.T. Nguyen & W.C. 
Torrez, "New applications of relational event algebra to 
fuzzy quantification and probabilistic reasoning". 
Proceedings Sixth Joint Conference on Information 
Sciences, March 8-14, 2002, Plenary Presentation, to 
appear. 
[13] I.R. Goodman & G.F. Kramer, "Extension of 
relational and conditional event algebra to random sets 
with applications to data fusion", in Random Sets: Theory 
and Applications (J. Goutsias, R.P. Mahler & H.T. 
Nguyen, eds.), Springer, New York, 1997, pp. 209-242. 
[14] I.R. Goodman & G.F. Kramer "Comparison of 
incompletely specified models in C4I and data fusion using 
relational and conditional event algebra", Proceedings 3rd 
International Command & Control, Research & 
Technology Symposium, National Defense University, 
Washington, D.C., June 17-20, 1997, pp. 193-215. 
[15] I.R. Goodman, R.P. Mahler & H.T. Nguyen, 
Mathematics of Data Fusion, Kluwer Academic, 
Dordrecht, Holland, 1997, Part 3 
[16] I.R. Goodman & H.T. Nguyen, "Mathematical 
foundations of conditionals and their probabilistic 
assignments",    International   Journal   of   Uncertainty, 

Fuzziness, and Knowledge-Based Systems, vol. 3 (3), 1995, 
pp. 247-339. 
[17]   I.R.   Goodman  &   H.T.   Nguyen,   Application  of 
conditional and relational event algebra to the defining of 
fuzzy logic concepts", Proceedings Signal Processing, 
Sensor Fusion & Target Recognition VIII (I. Kadar, ed.), 
SPIE vol. 3720 (AeroSense '99, Orlando, FL, April 5-7, 
1999), pp. 25-36. 
[18]   I.R. Goodman & H.T. Nguyen, "Probability updating 
using second order probabilities and conditional event 
algebra", Information Sciences, vol. 121, 1999, pp. 295- 
347. 
[19]   I.R.   Goodman   &   H.T.   Nguyen,   "Fuzziness   & 
Randomness,   Chapter   1   of book   Statistical  Models, 
Analysis & Management of Fuzzy Data, D.A. Ralescu, C. 
Bartoluzza & M.A.  Gil, eds.,  Springer, New York, to 
appear. 
[20]    S.    Kraus,    D.    Lehmann    &    M.    Magidor, 
"Nonmonotonic   reasoning,   preferential   models,   and 
cumulative logics", Artificial Intelligence, vol. 44, 1990, 
pp. 167-207. 
[21] R.B. Nelsen, An Introduction to Copulas, Lecture 
Notes in Statistics, no. 139, Springer, New York, 1999. 
[22] H.T. Nguyen & E.A. Walker, A First Course in Fuzzy 
Logic, CRC Press, Boca Raton, LA, 1997. 
[23]   J.   Pearl,   Probabilistic   Reasoning   in   Intelligent 
Systems:   Networks   of  Plausible   Inference,   Morgan 
Kaufmann, San Mateo, CA, 1988. 
[24]   W.C.   Torrez,   D.   Bamber   &   I.R.    Goodman, 
"Information assurance considerations for a fully netted 
force", Proceedings Fourth International Conference on 
Information   Fusion (FUSION 2001), Montreal, Quebec, 
Canada, August 6-10, 2001,, to appear. 


